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a b s t r a c t

A three-layer feed forward neural network was constructed and tested to analyze the second order kinetics
of solid–liquid adsorption process. The pseudo second order kinetics of auramine O onto activated carbon
was used to train the artificial neural network (ANN) to model the sorption system for various operating
conditions. The operating variables studied are the contact time, initial dye concentration, agitation speed,
temperature, initial solution pH and activated carbon mass. The studied operating variables were used as
the input to the constructed neural network to predict the dye uptake by pseudo second order kinetics
at any time as the output or the target. The dye uptake predicted by ANN trained by pseudo second
order kinetics was found to be precise in representing the experimental kinetics of auramine O uptake by
seudo second order kinetics
rtificial neural networks
eed forward network

activated carbon. The constructed network was also found to be precise in predicting the sorption kinetics
of auramine O by activated carbon for the new input data which are kept unaware of the trained neural
network showing its applicability to determine the dye uptake rate for any operating conditions under
interest. The ANN was also trained using pseudo second order kinetics of sorption of divalent metal ions
onto peat particles and also using the second order kinetics of cadmium ions onto tree fern particles. The
ANN and pseudo second order kinetics compliment each other to model the studied sorption systems for
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a wide range of operating

. Introduction

Activated carbon adsorption processes are proved to be effective
or the removal of various pollutants from aqueous solutions. Acti-
ated carbon prepared from various precursors has been reported
s useful for the removal of various pollutants from the aqueous
olutions [1,2]. Adsorption kinetics gives important information
bout the rapidity of the sorption process. Information of adsorp-
ion kinetics is required for selecting the optimum operating
onditions for the full-scale batch process [3]. The kinetics of
dsorption processes are usually modelled using the semi empirical
xpressions and mechanism based models [4–9]. Although these
inetic models have the advantage of representing the kinetics
f the adsorption process, they have the usual limitation of their
pplicability for a particular experimental condition. Several empir-

cal expressions have been reported for many solid–liquid sorption
ystems by correlating the determined kinetic constants and the
perating variable of interest [10–12]. Although these kinetic mod-
ls can be useful in simulating the adsorption kinetics, generation
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f any expression correlating the operating variables involved is
ot possible as the sorption process is highly influenced by oper-
ting parameters such as pH, initial dye concentration, adsorbent
ass, agitation speed and temperature. It would be interesting and

seful to utilize these theoretically sound models to simulate the
inetics of solid/liquid sorption systems to validate a wide range of
perating conditions. However the attempt to make any theoretical
inetics valid for any operating conditions would be a complicated
rocess as the theoretical models are sensitive to various operating
ariables such as initial dye concentration, adsorbent dosage, pH,
gitation speed and solution temperature. In this research the aim
as to make these theoretical kinetic models applicable to predict

he sorption kinetics for all experimental conditions.
Currently artificial neural networks (ANN) are found to be excel-

ent options for solving these types of complex issues. In chemical
ngineering, ANN was also found to be successfully applied to pre-
ict the adsorption equilibrium of solid–liquid systems [14], activity
oefficients of aromatic organic compounds [13], kinetics of cat-

lytic hydrogenation reaction [15] and solubility of proteins [16].
NN was previously used to simulate the equilibrium and kinet-

cs of the biosorption process [17]. In this research the aim was to
rain the ANN using theoretical sorption kinetics in order to simu-
ate the experimental kinetics. The pseudo second order kinetics of

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:vasanth_vit@yahoo.com
dx.doi.org/10.1016/j.cej.2008.07.026
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strategy of the network is shown in Fig. 3. The input vectors and the
corresponding output vectors are used to train the network until
it approximates the propagation function. The proposed network
with a sigmoid hidden layer and a linear output layer was found

Table 1
Range of operating variables used to train the network

Operating variable Range

Initial dye concentration (mg/L) 85, 100, 140, 170, 180, 200
Fig. 1. Structure of auramine O.

uramine O sorption onto activated carbon under different experi-
ental conditions was used to train the ANN. Pseudo second order

inetics was used as a model kinetic expression to train the ANN.
seudo second order kinetic expression was found to be successful
n representing the kinetics of several sorption systems. A review on
he pseudo second order kinetics for different sorption systems was

ade recently by Ho [18]. In general the sorption system following
pseudo second order kinetics can be represented as [18]

dAt

dt
= k(A0 − At)

2 (1)

here A0 and At represent the number of active sites occupied on
he adsorbent at time, t = 0 and at any time t. If q and qe represent
he amount of solute adsorbed onto unit mass of adsorbent at any
ime and at equilibrium, the kinetic rate equation according to a
seudo second order kinetics can be given by

dq

dt
= k(qe − q)2 (2)

here k is the kinetic rate constant. With respect to the initial
onditions, the boundary conditions for Eq. (2) are given by

= 0; t = 0 and q = q; t = t (3)

ntegrating Eq. (2) with respect to the boundary conditions as in Eq.
2), the pseudo second order kinetic expression after linearization
an be obtained

t

q
= 1

kq2
e

+ t

qe
(4)

q. (4) can be used to determine the kinetic constant and the equi-
ibrium uptake from the kinetics from the plot of t/q versus t.

In this study, the kinetic constants were obtained using Eq. (2)
nd were used to train and test the performance of ANN in pre-
icting the experimental kinetics. The operating variables include
he initial dye concentration, adsorbent dosage, initial solution pH,
ystem temperature and contact time. The idea of using theoretical
inetics to train the ANN was extended to the literature data on the
orption of cadmium ions by tree fern [19] and on the sorption of
ivalent metal ions (Cu, Ni and Pb) by sphagnum moss peat [20].

. Experimental

The dye auramine O, used in this study, was obtained from
entral Drug House, Mumbai. Synthetic stock dye solutions were
repared by dissolving 1 g of dye powder in 1 L of distilled water.
ll working solutions of desired initial concentration were prepared

rom the stock solution by subsequent dilution. The structure of the
ye auramine O is shown in Fig. 1. The powdered activated carbon
sed in this study was obtained from E-Merck Limited, Mumbai,

ndia. The laboratory grade activated carbon obtained was directly
sed as adsorbent without any pretreatment.

Sorption kinetics experiments were carried out using mechan-
cally agitated overhead laboratory stirrers at different initial dye
oncentrations or different operating conditions. The effect of dye

oncentration on the adsorption rate was estimated by agitating
.5 L of dye solution of known initial dye concentration with 0.3 g
f activated carbon in 2 L beakers at room temperature (32 ◦C) at
esired solution pH. Unless specified all the experiments were car-
ied out at a solution pH of 8 and at a constant agitation speed
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f 800 rpm. 2.5 mL of samples were pipetted out using 10 mL
yringe filter at different time intervals. The collected samples were
hen centrifuged and the concentration in the supernatant solu-
ion was analyzed for the solute concentration. The concentration
f auramine O was measured using UV spectrophotometer (Deep
ision 301E) at a maximum absorption wavelength of 430 nm.
nless specified, all the kinetic experiments were carried out for
pre-designed fixed operating line of 1.5 L/0.3 g. The range of oper-
ting conditions studied in this study that are used to train and test
he neural network are given in Table 1.

. Characterization of adsorbent

Some of the specifications of the activated carbon used in this
tudy as supplied by the manufacturer are given by: substances
oluble in water ≤1%, substances soluble in HCl ≤3%, Cl ≤0.2%
nd SO4

2− ≤0.2%; heavy metals as lead (Pb) ≤0.005% and iron (Fe)
0.1%; and incomplete carbonization: passes test, methylene blue
dsorption ≤180 mg/g, loss on drying ≤10% and residue on ignition
5%. The surface morphology of the carbon particles was char-
cterized by SEM analysis and is explained elsewhere [21]. The
ET surface area for the commercial activated carbon used in this
tudy was determined by nitrogen adsorption using t-method and
as found to be 1000.1 m2/g. The detailed physical characteristics

ncluding the pore size distribution of the commercial activated
arbon used in this study are given elsewhere [21].

. Construction of ANN

ANN consists of an input layer and an output layer connected
y several nodes. In this study a feed forward or back propaga-
ion network with multiple layers was constructed. In this study
Levenberg–Marquardt’s optimization was used to train the ANN.
he feed forward ANN adjusts the transfer function that is asso-
iated with the inputs and outputs. Multiple layer networks can
erform almost any linear or non-linear computation and can
pproximate any function reasonably well [22]. In this study, ini-
ially, a network with two hidden layers was constructed, trained
nd tested to represent the kinetics of activated carbon adsorption
rocess.

The detailed structure of the network and the training strategy
f the constructed neural network are shown in Figs. 2 and 3 respec-
ively. Fig. 2 shows the feed forward network with one hidden layer.
1 is the input vector to the hidden layer whereas W1 and b1 repre-
ents the weight and bias of the hidden layer. The information from
he hidden layer is transferred to the output layer as shown in Fig. 3.
he term P2 represents the output vector and can be determined
rom the weight W2 and bias b2 of the output layer. A tansig function
nd a purelin function were used as the propagation functions in
he hidden layer and in the output layers respectively. The training
dsorbent mass (g/1.5 L) 0.3, 0.6, 1.2, 1.8
nitial solution pH 3, 4, 5, 6, 7, 8
gitation speed (rpm) 800, 700, 600, 500, 400

rradiation time (min) 0, 1, 2, 3, 4, 5, 10, 20, 25, 30, 45, 50, 60, 90, 120
emperature (K) 305, 313, 323, 333
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of ANN predicted kinetics and the kinetics by pseudo second order
with the experimental kinetics was more or less the same. Thus
the pseudo second order kinetics if representing the experimen-
tal data well, will compliment the ANN to represent the kinetics

Table 2
Details of the trained neural network used to predict the dye uptake kinetics of
solid/liquid adsorption process

Type Value/comment

Layer 1 6 neurons
Fig. 2. Structure of the constructed two-layer net

o be capable of approximating the adsorption kinetics. The bias
nd the weights were obtained from the training process, which
s based on the pseudo second order kinetics. The operating vari-
bles initial dye concentration, adsorbent dosage, initial solution
H, system temperature and contact time were used as input vec-
ors whereas the dye uptake in mg/g was defined as the output
ector.

. Neural network modelling

The neural network toolbox Version 4 of MATLAB, Mathworks
nc. was used for simulation. The pseudo second order kinetics
as used as a target and the experimental conditions were pre-
rocessed so that the mean and standard deviation is 0 and 1.
he experimental conditions and the corresponding pseudo sec-
nd order kinetics were set as the input and the target vectors. The
eural network was trained in a batch mode. Training the neural
etworks by Levenberg–Marquardt’s algorithm is sensitive to the
umber of neurons in the hidden layer. The more the number of
eurons, the better is the performance of the neural network in
tting the data. However too many neurons in the hidden layer
ay result in the over fitting. During the training process, several

rials were made by increasing the number of neurons in the hid-
en layers gradually while optimising the transfer function for the
iven input and output conditions. In order to avoid the problems
ue to overfitting, a Bayesian regularization in combination with
evenberg–Marquardt’s training method was used. The Bayesian
egularization works best when the networks input and outputs
re scaled within the range of −1 to +1. After many trials, the neu-
al network with seven hidden layers was found to be excellent in
epresenting the pseudo second order kinetics irrespective of the

perating variables studied. The training is automatically stopped
hen the convergence is reached and the network is set ready for

he prediction. The convergence is reached when the sum of the
quared errors and the weights and biases reach some constant
alues. As the target and input vectors are normalized before train-

L
L
N
F
F

Fig. 3. Training strategy of the constructed f
and the flow of information within the network.

ng, the neural networks predict the output with mean and standard
eviation of zero and one. Thus the predicted values were converted
ack to the original target values. The details of the completely
rained neural network used to model the auramine O uptake by
ctivated carbon is given in Table 2. Fig. 4 shows the plot of q pre-
icted by ANN and the q predicted by pseudo second order kinetics
uring the training process. From Fig. 4, it can be observed that the
ewly constructed ANN was found to be successful in representing
he pseudo second order kinetics for the range of operating vari-
bles used during the training process. Fig. 4 also shows the plot
,experimental versus q,pseudo second order kinetics for the range of oper-
ting conditions studied. Further from Fig. 4, it can be observed
hat the ANN predicted kinetics deviates from the experimental
ata for some conditions. This is due to the poor representation
f the experimental data with the pseudo second order kinetics
orresponding to these conditions. Fig. 5 shows the plot of error
ifference between the experimental data and the pseudo second
rder kinetics. Fig. 5 also shows the error difference between the
xperimental data and the ANN predicted kinetics and the error
ifference between the pseudo second order kinetics and ANN pre-
icted kinetics. From Fig. 5, it can be observed that the deviation
ayer 2 7 neurons
ayer 3 1 neuron
umber of data used for training 272
unction in hidden layer Tansigmoid
unction of output layer Linear

eed forward artificial neural network.
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Fig. 6. Experimental data and predicted kinetics using ANN trained by pseudo sec-
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ig. 4. Parity plot between pseudo second order kinetics and the amount of dye
dsorbed, q, predicted by artificial neural networks during the training process.

f adsorption system as the whole for the range of operating
onditions studied. If the pseudo second order kinetics is accu-
ate to represent the experimental kinetics, then ANN could be a
ery useful tool in modelling the adsorption systems for a range of
perating conditions.

From design point of view it would be helpful to use ANN
o predict the kinetics of adsorption process for any given new
nput conditions. Thus it is important to check how well the con-
tructed network was helpful in determining the sorption kinetics
f auramine O onto activated carbon using the ANN trained with
seudo second order kinetics for new inputs. To test the perfor-
ance of the trained network, new inputs, which are not used
hile training, were fed to the neural network and the correspond-

ng dye uptake rate was determined from the neural network. In

ddition the trained network was tested with new inputs which
re out of the range of operating conditions used to train the ANN
uring the training process. Fig. 6 shows the experimental data of q
ersus time for different operating conditions. Fig. 6 also the kinet-

ig. 5. Plot of error difference between experimental data with pseudo second order
inetics and ANN predicted kinetics.
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nd order kinetics during the testing process. (Experiment 1: C0, 200 g/L; agitation
peed, 800 rpm; activated carbon mass, 1 g; volume of solution, 1.5 L; initial pH, 8;
emperature, 305 K. Experiment 2: C0, 200 g/L; agitation speed, 800 rpm; activated
arbon mass, 2 g; volume of solution, 1.5 L; initial pH, 8; temperature, 305 K.)

cs predicted by ANN and pseudo second order expression for the
orption of auramine O onto activated carbon. From Fig. 6, it can
e observed that the ANN trained by pseudo second order kinetics
as found to be excellent in predicting the experimental kinetics
f auramine O by activated carbon. From Fig. 6, it can be further
bserved that the successfulness of ANN in predicting the kinet-
cs of auramine O onto activated carbon depends on the best fit of
seudo second order kinetics in the experimental data. From Fig. 6,

t can be also observed that the newly constructed neural network
as good in predicting the adsorption kinetics of auramine O by

ctivated carbon even for new experimental conditions. The coeffi-
ient of determination between the experimental data and pseudo
econd order kinetics and the coefficient of determination and the
ean square error difference between experimental data and ANN

redicted kinetics for the range of new experimental conditions
sed to test the trained ANN was given in Table 3. From MSE and r2
Table 3) it can be observed that the ANN was good enough in pre-
icting the experimental kinetics of auramine O by activated carbon
nd the error difference between experimental data with ANN pre-
icted kinetics and pseudo second order kinetics was exactly the

able 3
oefficient of determination r2 between experimental data and predicted kinetics
sing ANN and pseudo second order expression

perating conditions Coefficient of determination, r2

qexperimental vs qsecond order kinetics qexperimental vs qANN

0: 200 mg/L

0.99
(185.88a)

0.99
(183.49a)

gitation speed: 800 rpm
ctivated carbon mass: 1 g
olume of solution: 1.5 L

nitial pH: 8
emperature: 305 K

0: 200 mg/L

0.99
(7.329a)

0.99
(7.233a)

gitation speed: 800 rpm
ctivated carbon mass: 2 g
olume of solution: 1.5 L

nitial pH: 8
emperature: 305 K

a Mean squared error (MSE).
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ig. 7. Parity plot between pseudo second order kinetics and the q, predicted by
rtificial neural networks for the sorption of divalent metal ions, Cu, Ni and Pb, onto
eat particles and cadmium ions onto tree fern particles.

ame. Thus the pseudo second order kinetics will complement ANN
ery well if the experimental data follows a pseudo second order
inetics at all the operating conditions studied. The r2 value of 0.99
etween the ANN predicted kinetics and experimental data suggest
hat the newly constructed ANN, which is trained using pseudo sec-
nd order kinetics, was precise in predicting the adsorption kinetics
f auramine O by activated carbon for the new experimental condi-
ions. Another advantage of the newly constructed neural network

odel is its accuracy to predict the adsorption kinetics rate for any
nitial concentration, temperature, agitation speed, pH and contact
ime within the ranges studied and also for the new experimental
onditions outside the studied range.

The ANN was further used to model the pseudo second order
inetics of sorption of divalent metal ions onto peat particles and
or the sorption of cadmium ions onto tree fern particles based on
he information from the literature [19,20]. The ANN was trained
sing the pseudo second order kinetic constants reported in the

iteratures for the sorption of divalent metal ions, Cu, Ni and Pb,
nto peat particles and for cadmium ions onto tree fern. The ANN
ith 5 neurons (contact time, initial dye concentration, adsorbent
ass, agitation speed and particle diameter) in the input layer 3

eurons in the hidden layer was used to train the ANN to model the
inetics of uptake of cadmium ions by tree fern particles. The ANN
as constructed with two input neurons representing the contact

ime and initial dye concentration to model the kinetic uptake of Cu,
i and Pb onto peat particles. The ANN with five, six and ten neurons

n the hidden layer was found to be successful in simulating the
seudo second order kinetics of Cu, Ni and Pb onto peat particles
espectively.

Fig. 7 shows the plot of pseudo second order kinetics versus q,
redicted by ANN for Cu, Ni and Pb onto peat particles and also the
lot of pseudo second order kinetics versus q, predicted by ANN for
d ions onto tree fern particles for the range of operating variables
eported in the literature [19,20]. From Fig. 7, it can be observed
hat the ANN was successful in modelling the pseudo second order

inetics of sorption of divalent metal ions onto peat particles and
admium ions onto tree fern particles. Fig. 7 also show that the
NN and pseudo second order kinetics complement each other in
odelling the solid/liquid adsorption system as a whole which is

alid for the range of operating variables studied.

[

[
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. Conclusions

This study showed ANN as a powerful tool in modelling the
inetics of solid/liquid sorption systems for a wide range of operat-
ng conditions. The experimental data of auramine O onto activated
arbon was used to analyze the performance of ANN trained using
he pseudo second order kinetics in modelling the sorption kinet-
cs. The ANN trained by pseudo second order kinetics was found
o be excellent in representing the kinetics of auramine O uptake
y activated carbon particles. The ANN can train by itself and can
e useful in predicting the kinetics of sorption process even for
he new experimental conditions within the ranges used to train
he ANN. However this study is limited to find the applicability
f ANN technique in modelling the adsorption process as a whole
sing the theoretical second order kinetics. A 6–7–1 neural net-
ork was found to be successful to model the adsorption kinetics

f the studied system for the range of operating conditions studied.
he MSE difference between the experimental data and the experi-
ental data and the MSE between the pseudo second order kinetics

nd the experimental data vary only by <2%. The ANN trained with
seudo second order kinetics was successful to simulate the dye
ptake process for the range of operating conditions studied. The
seudo second order kinetics for the sorption of divalent metal ions
nto peat particles and cadmium onto tree fern was used to train
he ANN and was found to be successful in modelling the sorption
ystem as a whole for a wide range of operating conditions. The
seudo second order kinetics and ANN complement each other to
odel the solid/liquid sorption system as a whole for a wide range

f operating conditions.
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